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Timing jitter of femtosecond solitons in single-mode optical fibers: A perturbation model
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On the basis of the higher-order nonlinear Schro¨dinger equation, an extended soliton perturbation model is
proposed. The evolution equations for the soliton parameters and the resultant expressions for timing jitter are
derived. Subsequently, the model is tested to be correct in the subpicosecond-femtosecond regime through
direct numerical simulations of the underlying equation by using the stochastic split-step Fourier method. It is
shown that the results of our numerical simulations are in excellent agreement with analytical predictions for
timing jitter. It is found that the Gordon-Haus jitter for dark solitons is nearly 1/A2 of that for bright solitons,
and that the Raman jitter always dominates the Gordon-Haus jitter in the femtosecond regime. In particular, the
stabilities of the solitary waves are demonstrated under the Gaussian white noise. It is expected that for bright
and dark solitons, the present equations of motion would find extensive applications in the high-speed com-
munication systems more than those obtained by use of the well-known perturbation theory about the nonlinear
Schrödinger equation@J. Opt. Soc. Am. B18, 153 ~2001!#.
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I. INTRODUCTION

The soliton concept is a sophisticated mathematical c
struct based on the complete integrability of a class of n
linear partial differential equations which can pass the Pa
levé test and can be solved via the inverse scatter
transform@1#. Physically, there are two different mechanism
which make an optical pulse propagation a soliton or solit
wave. One, given by Hasegawa and Tappert, is the bala
between the pulse broadening of the group-velocity disp
sion ~GVD! and the compressing of the Kerr nonlineari
which is governed by the well-analyzed nonlinear Sch¨-
dinger ~NLS! equation@2#. The other, proposed by McCa
and Hahn, is due to the self-induced transparency in a r
nant medium and is described by the Maxwell-Bloch eq
tions @3#. In this paper, we are concerned with femtoseco
soliton propagation in single-mode optical fibers, which b
longs to the former case.

Over short distances and in weak nonlinear medium,
NLS equation can lead to a soliton behavior applicable t
picosecond regime, whereas over longer distances or fo
initial high intense ultrashort pulse a number of higher-or
effects such as the third-order dispersion~TOD!, self-
steepening@4#, and the self-frequency shift~SFS! @5# must be
taken into account. Thus, the classical NLS equation fails
the physical description of soliton behavior under the c
cumstances. In recent literature, some authors pointed
that the higher-order nonlinear Schro¨dinger ~HONLS! equa-
tion derived by Kodama and Hasegawa@6# can be used to
describe the soliton behavior in a subpicoseco
femtosecond regime@7–11#. Moreover, both bright- and
dark-soliton solutions were given there under certain pa
metric conditions.

In the current decade, physicists@12–15# have elucidated
with sufficient accuracy some phenomenological effec
e.g., soliton noise or timing jitter, by means of the perturb
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tion theory about the NLS equation developed by Haus
Lai @12#. In particular, Drummondet al. @13# showed that
intrinsic thermal quantum noise from phonon reservo
which depends strongly on both the temperature and p
intensity, contributes more largely to timing jitter than do
the gain-related Gordon-Haus noise@14# for femtosecond
solitons. For simplicity, they ignored the self-frequency sh
and Kerr dispersion. Following the procedures developed
Drummondet al. @13# and Hauset al. @12,15# we propose an
extended soliton perturbation model, based on the HON
equation. As a result, the evolution equations of soliton
rameters and the analytical expressions for timing jitter
respectively derived for bright and dark solitons. Therein
have considered TOD and Kerr dispersion. By checking
analytical predictions for timing jitter against direct nume
cal simulations, we show that the results obtained by t
model are correct in the subpicosecond-femtosecond reg
and are more generic than those obtained before@13,15#,
since those higher-order effects are included.

The paper is organized as follows. The generalized N
equation for femtosecond solitons propagating in sing
mode, polarization-preserving optical fibers will be cited
Sec. II, where the corresponding bright- and dark-soliton
lutions for the HONLS equation are given. More signi
cantly, the stabilities of the solitonlike solutions und
Gaussian white noise are also demonstrated numerically
Sec. III, we propose an extended soliton perturbation mo
based on the HONLS equation and derive the resultant e
lution equations for the soliton parameters and the co
sponding expressions for timing jitter for bright and da
solitons. In order to check our theoretical model, an effici
simulating scheme in terms of the stochastic split-step F
rier method is outlined in Sec. IV. Comparing our analytic
calculations with numerical simulations, various timing j
ters are discussed in Sec. V. Finally, our results are conclu
in Sec. VI.

II. GENERALIZED NLS EQUATION

The generalized nonlinear propagation equation gove
ing the evolution of femtosecond optical fieldc in single-
©2004 The American Physical Society02-1
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mode optical fibers was derived by Kodama and Haseg
@6#. In the context of soliton propagation, it is useful to em
ploy a renormalization in the propagative reference frame
t5(t2z/v)/T0 and z5z/LD , whereT0 is a typical initial
soliton duration, andLD5T0

2/ub2u denotes the dispersio
length at carrier frequencyv0. By including the noise
sources@13#, the generalized NLS equation can be rewritt
as

cz56
i

2
ctt1 i ucu2c1

1

6
a1cttt2gc2a2~ ucu2c!t

2a3c~ ucu2!t1 iGRc1G, ~1!

where a shorthandc5c(z,t) is exploited for brevity; thus is
a dimensionless photon field, and the subscriptsz andt de-
note the spatial and temporal partial derivatives. The te
related tog accounts for the fiber net loss through the re
tion g5(gA2gG)LD /v, wheregA andgG denote the corre-
sponding absorption and gain coefficients. The parame
bm[@dmb/dvm#v5v0

with, m51,2,3, result from an expan

sion of the propagation constantb(v) in a Taylor series.
Physically, the group velocityv is simply the inverse of the
parameterb1. The parametera1 is responsible for the TOD
and is defined asa15b3 /T0ub2u, while the terms related to
a2 anda3 describe the effects of self-steepening and the S
arising from stimulated Raman scattering, respectively.
though self-steepening and the SFS are negligible in a p
second regime, they are of considerable importance when
pulses are shorter than 100 fs. The positive sign in fron
the second derivative term applies for an anomalous dis
sion (b2,0), which occurs for longer wavelengths, where
the negative sign applies for normal dispersion (b2.0). The
model parametersa1 andg are real constants;a2 anda3 can
be complex@6,16#. Here for simplicity, we have assumed th
the coefficientsa2 and a3 are also real constants and th
inequality 3a212a3.0 is always met.

It should be noted that in Eq.~1!, the Raman noise an
gain-related Gordon-Haus noise appear, respectively, as
real multiplicative stochastic variableGR and the complex
additive stochastic variableG, which are responsible for th
timing jitter occurring in the soliton communication system
@13,17–21#. According to the generalized Wiener-Khintchin
theorem@22#, the spatiotemporal correlations of stochas
variables can be expressed as@13#

^GR~z,t!GR~z8,t8!&5
1

n̄
F~t2t8!d~z2z8!,

^G* ~z,t!G~z8,t8!&5
aG

n̄
d~t2t8!d~z2z8!, ~2!

^G~z,t!G* ~z8,t8!&5
aA

n̄
d~t2t8!d~z2z8!,

where aG52gGLD /v, aA52g ALD /v, n̄5v2T0 /xLD is
the typical number of photons in a soliton pulse,x
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5hn2v0
2v2/(2pAeff c) is the effective nonlinear susceptibilit

resulting from the electronic Kerr and Raman contributio
Aeff is known as the effective mode area,n2 is the nonlinear
refractive index, andc and h52p\ represent the speed o
light and the Planck constant, respectively. The time corre
tion function is given by

F~t!5
1

2pE exp~2 ivt!aR~v!Fnth~ uvu/T0!1
1

2Gdv,

~3!

where aR(v) is the Raman gain coefficient@13,23#, and
nth(v)5@exp(\v/kBT)21#21 denotes the thermal Bose
Einstein distribution, withkB the Boltzmann’s constant andT
the temperature. It is easy to show that if the gain and los
the fiber are broadband relative to the soliton bandwidth
balance exactly, i.e.,g50, and the noise sources are neg
gible, Eq.~1! can be reduced to the familiar HONLS equ
tion:

c
z
5

i

2
a0ctt1 i ucu2c1

1

6
a1cttt2a2~ ucu2c!t

2a3c~ ucu2!t , ~4!

wherea05sgn(2b2). The five terms on the right-hand sid
of Eq. ~4! account for the GVD, self-phase modulatio
~SPM!, TOD, self-steepening, and the SFS arising fro
stimulated Raman scattering, respectively. When the
three terms are omitted, Eq.~4! reduces to the well-known
NLS equation. As compared with the GVD and SPM whi
produce symmetric broadening in the time and freque
domain, respectively, and counterbalance to propagate
tons under certain parametric conditions, these higher-o
effects cause asymmetrical broadening either temporally
spectrally and also have the possibilities to yield solit
propagation@10#. After an appropriate transformation, th
bright-soliton solution of Eq.~4!, where a051, reads
@7,8,11#

c0~z,t!5mAsech@At1q~z!#exp@2 iVt1 iu~z!#, ~5!

where

m5S 2a1

3a212a3
D 1/2

, ~a1,0!,

V5
3a212a31a1

2a1~a21a3!
,

dq~z!

dz
5

1

6
a1A32

1

2
a1AV21AV, ~6!

du~z!

dz
5

1

2
~12a1V!A21

1

6
a1V32

1

2
V2.

When a0521, the dark-soliton solution of Eq.~4! can be
written as@9,11#

c0~z,t!5nB tanh@Bt2Q~z!#exp@2 iÃt1 iq~z!#, ~7!
2-2
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where

n5S a1

3a212a3
D 1/2

, ~a1.0!,

Ã5
a123a222a3

2a1~a21a3!
,

dQ~z!

dz
5

1

3
a1B31

1

2
a1BÃ21BÃ, ~8!

dq~z!

dz
5~11a1Ã!B21

1

6
a1Ã31

1

2
Ã2.

Obviously, either solution~5! or ~7! has only one indepen
dent intrinsic parameterA or B since the parameterV or Ã is
fixed @7,17#. It is noted that there exists a proper subset
conditions, to name a few,a1 :a2 :a3576:6:26 ~Hirota!,
or 76:6:23 ~Sasa-Satsuma!, under which Eq.~4! is com-
pletely integrable@7#. In the cases beyond these condition
solutions~5! and ~7! are not true solitons in a strict math
ematical sense, but share some properties with solitons
as preserving shape and size during propagation@24#. It is of
interest to note that these solutions are not compatible w
the respective counterparts of the standard NLS equa
@11#. But, as in an integrable case, these solitons or soli
waves in our Hamiltonian systems~but nonintegrable! can
also be regarded as nonlinear modes, and allow us to
scribe the behavior of systems with an infinite number
degrees of freedom in terms of a few variables~see, e.g., Ref.
@25#!. For brevity, our localized waves under considerat
are loosely called ‘‘solitons’’ even though this is a termino
ogy reserved for integrable sets.

Because all physical systems are dispersive and diss
tive in reality, an investigation of the stabilities of these so
tons is of great significance@16#. In order to test the stabili-
ties of solitons, the underlying equation~1! is directly
simulated by using the stochastic split-step Fourier met
~see Sec. IV!. Figures 1 and 2 show the evolutions of the
T05500 fs bright and dark solitons under perturbations
Gaussian white noise, respectively. It is striking that the s
tons of motion are stable. Here the dimensionless model
rameters area1579.631023, a253.1831023, and a3
5(7a123a2)/2. These parameters can be determined
several basic fiber parameters such asb2570.5 ps2/km and
b3570.0024 ps3/km, where negative and positive sign
correspond to the bright and dark solitons, respectiv
Compared with Fig. 1, Fig. 3 displays the evolution of
bright soliton with the same initial durationT0 but with dif-
ferent model parameters, wherea1520.056,a2
53.1831023, and a352(a113a2)/2. These values are
subject to another set of fiber parametersb25
22.5 ps2/km, andb3520.07 ps3/km. It is clear that these
solitons, apart from undergoing a temporal shift, are rat
stable against some finite perturbations in a broad param
range. Their profiles or shapes are well preserved a
propagating a long distance of a few thousands of disper
lengths as shown in those insets of Figs. 1, 2, and 3, wh
04660
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show comparisons of pulses at typical distancesz with the
initial distributions as well as exact solutions without nois

As usual, Eq.~1! can be solved in terms of the mome
method@19#, or the perturbation theory that treats all hig
order effects and noise sources as a small perturbation to
well-analyzed NLS equation@26#. Corresponding to our pro
posed system, however, we find that there exists a relati
simpler alternative in which one can take only the stocha
terms as a small perturbation to the HONLS equation. D
tailed treatments of the problem will be provided in Sec. I

III. SOLITON PERTURBATION MODEL

Before proceeding, we would like to discuss the adiaba
perturbation theory ~APT! about femtosecond solitons

FIG. 1. Evolution of the 500-fs bright soliton under the pertu
bation of Gaussian white noise. In our simulation of Eq.~1!, two
dimensionless stepsDz50.04 andDt50.005 are used in the dis
cretization andcbri(0,t) is chosen as initial pulse, wherea15
29.631023, a253.1831023, anda352(a113a2)/2. The inset
shows a comparison of pulses atz50 and 2000 as well as an exa
distribution without noise.

FIG. 2. Evolution of the 500-fs dark soliton under the perturb
tion of Gaussian white noise. The discretized steps are the sam
Fig. 1, butcdar(0,t) is chosen as the initial pulse. Here the para
eters are a159.631023, a253.1831023, and a35(a1

23a2)/2. The inset shows a comparison of pulses atz50 and
2000 as well as an exact distribution without noise.
2-3
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which has been used successfully to investigate the tim
jitter in the high-speed soliton communication systems@18#.
In the following, we wish to propose an extended solit
perturbation model and derive the evolution equations for
soliton parameters. Solving these equations, we shall ob
approximately the analytical formulas of timing jitter fo
bright and dark solitons.

Now, we apply the APT to Eq.~1! by taking its unper-
turbed solution as a fundamental soliton of the form of so
tion ~5! @or Eq. ~7!#, where parameterV ~or Ã) is assumed
to be a variable just like the parameterA or B, and all pa-
rametersA, V, q, and u ~or B, Ã, Q, and q) vary with
distancez slowly. Furthermore, we treat the noise termḠ
5 iGRc01G on the right-hand side of Eq.~1! as a small
perturbation. The evolution equations for the bright solit
parameters are therefore governed by

dA

dz
5ReE UAḠdt,

du

dz
52

1

6
~12a1V!A21

1

6
a1V32

1

2
V2

1
2

3
m2~11a2V!A21ImE UuḠdt,

~9!

dq

dz
5

1

6
a1A32

1

2
a1AV21AV1ReE UqḠdt,

dV

dz
5ImE UVḠdt,

where ‘‘Re’’ and ‘‘Im’’ stand for real and imaginary parts o
the whole integral, respectively. The projection functions
bright solitons are given by

FIG. 3. Evolution of the 500-fs bright soliton under the pertu
bation of Gaussian white noise, wherea1520.056,a253.18
31023, and a352(a113a2)/2. The other parameters are th
same as in Fig. 1. The inset shows a comparison of pulsesz
50, and 1000 as well as an exact distribution without noise.
04660
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UA5
1

m2
c0* ,

Uu5
1

m2A
F1

2
1q tanh~At1q!Gc0* ,

Uq52
1

m2
tc0* , ~10!

UV52
1

m2
tanh~At1q!c0* .

In the same way, the equations of motion for the dark soli
parameters are found readily to be

dB

dz
5ReE UBḠdt,

dq

dz
5

1

3
~11a1Ã!B21

1

6
a1Ã31

1

2
Ã21

2

3
n2~11a2Ã!B2

1ImE UqḠdt,

~11!
dQ

dz
5

1

3
a1B31

1

2
a1BÃ21BÃ1ReE UQḠdt,

dÃ

dz
5ImE UÃḠdt,

where the projection functions take the forms

UB5
1

n

B tanh~Bt2Q!

cosh2~Bt2Q!
exp@ iÃt2 iq#,

Uq5
1

n

Bt22Q

cosh2~Bt2Q!
exp@ iÃt2 iq#,

UQ5
1

n

Q tanh~Bt2Q!23/4

cosh2~Bt2Q!
exp@ iÃt2 iq#, ~12!

UÃ52
1

n
B sech2~Bt2Q!exp@ iÃt2 iq#.

It is straightforward to prove that when the noise sourc
vanish, Eqs.~9! and ~11! reduce to Eqs.~5! and ~7!, respec-
tively. For heuristical discussion, we illustrate the evoluti
of a bright soliton in Fig. 4 with the same conditions as
Fig. 1, but with a direct numerical simulation of Eq.~9!. In
essence, these sets of stochastic differential equations a
well with Eq. ~1! within their errors, especially for picosec
ond solitons@18#. Therefore, our Eqs.~9!–~12! can be ap-
plied to the numerical study of timing jitter. On the oth
hand, two parametersV andÃ in these equations fluctuat
with the noise termḠ and become of stochastic functions
2-4
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distance. Thus, it is reasonable to takeV as the frequency
variable of bright soliton andf related toÃ as the phase
shift of dark soliton@13,21# in the following subsections.

A. Bright solitons

Following the method developed by Haus and Lai@12#,
we treat the effect of the noise term as a perturbation to
solution of a bright soliton whose parameters vary slow
with

c~z,t!5c0~z,t!1Dc~z,t!, ~13!

where c0(z,t) is given by the Eq.~5!. For simplicity, we
shall study the casea113a212a350 in this paper. Al-
though the situationa113a212a3Þ0 is a little compli-
cated, one could deal with it in a similar fashion. Furth
more, the bright-soliton solution~5! reduces to

c0~z,t!5A sech@At1q~z!#exp@ iu~z!#, ~14!

where

q~z!5
1

6
a1A3z, u~z!5

1

2
A2z.

Substituting Eq.~13! into Eq. ~1! and neglecting highe
order terms thanDc, with some manipulations, we have

@Dc#z5
i

2
a0@Dc#tt1 i @c0

2Dc* 12uc0u2Dc#

1
1

6
a1@Dc#ttt2a2@c0

2Dc* 12uc0u2Dc#t

2a3@ uc0u2#tDc2a3@c0* Dc1c0Dc* #tc01Ḡ,

~15!

wherea051 for bright solitons.
To solve Eq.~15!, the perturbed termDc can be approxi-

mated as a superposition of changes in the four soliton
rametersA, u, q, andV, plus a continuum termDcc ,

FIG. 4. Evolution of the 500-fs bright soliton under the pertu
bation of Gaussian white noise, where we simulate Eq.~9! and use
Dz50.01 andDt50.015. The other conditions are the same as
Fig. 1.
04660
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Dc5 f A~z,t!DA~z!1 f u~z,t!Du~z!1 f q~z,t!Dq~z!

1 f V~z,t!DV~z!1Dcc , ~16!

where the perturbation functionsf Xi
(z,t) are derivatives of

c0(z,t) with respect toXi , whereXi5A, u, q, andV. It is
noted thatDA(z), Du(z), Dq(z), andDV(z) are real func-
tions of distancez. After a little algebra, we find

f A~z,t!5
]

]A
c0~z,t!5@1/A2t tanh~At1q!#c0 ,

f u~z,t!5
]

]u
c0~z,t!5 ic0 ,

f q~z,t!5
]

]q
c0~z,t!52tanh~At1q!c0 , ~17!

f V~z,t!5
]

]V
c0~z,t!52 i tc0 .

Because Eq.~15! is not self-adjoint, these functions in Eq
~17! are not orthogonal. In order to project out the evoluti
of a particular parameter, we therefore choose an alterna
set of functionsf Xi

(z,t) as

f A~z,t!5c0 ,

f u~z,t!5 i S t1
2q

A D tanh~At1q!c0 ,

f q~z,t!52tc0 , ~18!

f V~z,t!52 i tanh~At1q!c0 ,

which are the eigenfunctions of the adjoint equation to E
~15! and are orthonormal to the set in Eq.~17!, i.e.,

ReE
2`

`

f Xi
* ~z,t! f Xj

~z,t!dt5d i , j . ~19!

Because the group velocity for any linear perturbation is d
ferent from the propagation velocity of the soliton, the p
turbation acting on soliton will disperse and/or move aw
from the soliton. Therefore, the continuumDcc is also or-
thogonal tof Xi

(z,t) under the circumstances@12,13,15#.
By substituting Eq.~16! into Eq. ~15! and using the or-

thogonal relation~19!, the four equations of motion for the
soliton parameters can be derived as~see the Appendix!

@DA#z5GA~z!,

@Du#z5ADA1
1

6
~2a22a1!A2DV1Gu~z!,

@Dq#z5ADV1
1

2
a1A2DA1Gq~z!, ~20!

n

2-5
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@DV#z5GV~z!,

where the noise sources are given by

GXi
~z!5ReE

2`

`

f Xi
* ~z,t!Ḡdt. ~21!

It should be emphasized that the third formula in Eq.~20!
describes the dependence of position fluctuationsDq(z) on
both frequency fluctuationsDV(z) and amplitude fluctua-
tions DA(z) when the parametera1 is non-negligible. This
effect is of great importance for femtosecond solitons. P
vided that the TOD, self-steepening, and SFS effects are
considered, Eq.~20! reduces to the case of picosecond so
tons @see, e.g., Eqs.~4.7!–~4.10! in Ref. @15##.

If choosing a multimode coherent state as the initial c
dition, that is, for coherent inputs, the Wigner vacuum flu
tuations are Gaussian and are correlated as

^Dc* ~0,t!Dc~0,t8!&5
1

2n̄
d~t2t8!; ~22!

then, upon integrating the first and fourth formulas in E
~20!, two correlations related to the fluctuations in amplitu
and frequency can be given by

^DA* ~z!DA~z8!&5^DA* ~0!DA~0!&

1E
0

zE
0

z8
^GA* ~z9!GA~z-!&dz9dz-

5
A

2n̄
1

AaG

n̄
z, z,z8, ~23!

^DV* ~z!DV~z8!&5^DV* ~0!DV~0!&

1E
0

zE
0

z8
^GV* ~z9!GV~z-!&dz9dz-

5
A

6n̄
1

A

3n̄
@aG16AI~A!#z, z,z8,

~24!

where DXi(0)5Re* f Xi
* (0,t)Dc(0,t)dt, and the overlap

integralI(X) is defined as

I~X!5E
2`

` E
2`

` tanht tanht8

2 cosh2 t cosh2 t8
FS t2t8

X Ddt dt8.

~25!

In the derivations of Eqs.~23! and ~24!, we have used the
stochastic correlations in Eq.~2!, and the funda-
mental knowledge such aŝ ReG* (z,t)ReG(z8,t8)&
5(1/2)RêG* (z,t)G(z8,t8)& @22#.

The correlation in position fluctuations corresponds to
timing jitter in arrival times since we have chosen a prop
gative reference frame. Therefore the jitter feeds off posit
fluctuations as well as off noises entering through the
04660
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quency and amplitude. By using Eqs.~20!, ~23!, and~24!, the
jitter variance can be written as

sq
25^Dq* ~z!Dq~z!&

5^Dq* ~0!Dq~0!&

1A2E
0

zE
0

z

^DV* ~z9!DV~z-!&dz9 dz-

1
1

4
a1

2A4E
0

zE
0

z

^DA* ~z9!DA~z-!&dz9 dz-

1a1A2E
0

zE
0

z

^DA* ~z9!Gq~z-!&dz9 dz-

1E
0

zE
0

z

^Gq* ~z9!Gq~z-!&dz9 dz-

5s I
21sGH

2 1sR
2 . ~26!

It should be pointed out that other correlations undisplay
above are equal to zero. Heres I

2 , sGH
2 , andsR

2 correspond
to the mean-square timing jitter resulting from the vacuu
fluctuations, the Gordon-Haus effect, and Raman noise,
spectively. We find

s I
25

p2

24n̄A
1F 1

6n̄
1

a1
2A2

8n̄
GA3z2,

sGH
2 5

p2aG

12n̄A
z1F 1

9n̄
1

13a1
2A2

108n̄
GaGA3z3, ~27!

sR
25

2I~A!

3n̄
A4z3.

The resulting formulas~27! are not only useful in the fem
tosecond regime, but are also applicable to the picosec
regime. In the picosecond regime,a1 is much less than 1
Thus all terms associated witha1 in Eq. ~27! can be ne-
glected. But the mean-square Gordon-Haus jitter,sGH

2 , still
has a cubic growth with distance. Our result coincides w
the conclusion reported by Haus and co-workers@14,15#. In
the femtosecond regime, these mean-square jitters, ex
the Raman one which seems to be immune to the hig
order effects, have an extra quadratic or cubic grow
and depend strongly on the magnitude ofa1. Indeed,
if VÞ0 is considered, the mean-square Raman jitter a
depends on the higher-order effects, wheresR

252(1

2a1V)2I(A)A4z3/3n̄.

B. Dark solitons

In the normal dispersion regime (a1.0), the HONLS
equation has a dark-soliton solution described by Eq.~7!. In
analogy to bright solitons, we consider the most simple c
Ã50, i.e., the relationa153a212a3 is satisfied. Now, the
dark-soliton solution is identified as the black soliton
2-6
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c0~z,t!5B tanh@Bt2Q~z!#exp@ iq~z!#, ~28!

where

Q~z!5
1

3
a1B3z, q~z!5B2z.

HereB denotes the amplitude of the background field. As h
been known, a dark soliton is a kink-type solution conne
ing two stable background waves of the same amplitude
of different phases. By considering the phase shiftf5p for
the black soliton, Eq.~28! can be rewritten as@13,21#

c0~z,t!5BFsin
f

2
tanhS Bt sin

f

2
2QD1 i cos

f

2 G
3exp@ iq~z!#. ~29!

Furthermore, the projection functions for the soliton para
etersPiP$B,q,Q,f% can be expressed as

f B5@ tanh~Bt2Q!1Bt sech2~Bt2Q!#exp~ iq!,

f q5 iB tanh~Bt2Q!exp~ iq!,

f Q52B sech2~Bt2Q!exp~ iq!, ~30!

f f52
i

2
B exp~ iq!.

It is interesting that we can construct a set of adjoint fu
tions which can overcome the nonvanishing boundary c
dition in the forms

f B5
9B

31p2
~Bt2Q!sech2~Bt2Q!exp~ iq!,

f q5 i ~Bt2Q!sech2~Bt2Q!exp~ iq!,

f Q5F2
3

4
1

9Q

31p2
~Bt2Q!Gsech2~Bt2Q!exp~ iq!,

~31!

f f52 i sech2~Bt2Q!exp~ iq!.

In consequence, it follows from Eqs.~30! and ~31! that

ReE
2`

`

f Pi
* ~z,t! f Pj

~z,t!dt5d i , j . ~32!

By using Eqs.~30!–~32! and combining Eq.~15!, with the
same procedures as for bright solitons, the evolution eq
tions for the soliton parameters (a0521) can be given by

@DB#z5GB~z!,

@Dq#z52BDB1
1

3
~a21a3!B3Df1Gq~z!,
04660
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@DQ#z5
1

2
B2Df1a1B2DB1GQ~z!, ~33!

@Df#z5Gf~z!,

where the stochastic terms are defined as

GPi
~z!5ReE

2`

`

f Pi
* ~z,t!Ḡdt. ~34!

In the same way, the correlations of fluctuations in amplitu
and phase shift are found to be

^DB* ~z!DB~z8!&5
9~p226!B

4~31p2!2n̄
~112aGz!, z,z8,

~35!

^Df* ~z!Df~z8!&5
1

3n̄B
~112aGz!1

2I~B!

n̄
z, z,z8.

~36!

From Eqs.~33!, ~35!, and~36!, the mean-square timing jitte
for a black soliton can be evaluated. Thus, one has

sQ
2 5^DQ* ~z!DQ~z!&5s I

21sGH
2 1sR

2 , ~37!

wheres I
2 , sGH

2 , andsR
2 read

s I
25

3

16n̄B
1F 1

12n̄
1

9~p226!a1
2B2

4~31p2!2n̄
GB3z2,

sGH
2 5

3aG

8n̄B
z1F 1

18n̄
1

13~p226!a1
2B2

6~31p2!2n̄
GaGB3z3, ~38!

sR
25

I~B!

6n̄
B4z3.

As in the case of bright solitons, all mean-square jitters
Eq. ~38! have a quadratic or cubic growth even though t
parametera1 vanishes. In contrast, the size of these jitters
smaller than that in the bright-soliton case for the sa
propagation distance@20,21#. Detailed discussions will be
provided in Sec. V.

It should be pointed out that Eqs.~20! and ~33! are our
main results using perturbation theory, based on the HON
equation, and are somewhat similar to those in Refs.@13# and
@15#. By contrast, these results are derived exactly. The
pressions in Eqs.~27! and ~38! can be used to evaluate th
timing jitter analytically. It has been expected that our resu
would find more extensive applications in the field of hig
speed optical communications. To test our theoretical pre
tions, we wish to simulate the timing jitter directly, based
the underlying equation~1!.

IV. NUMERICAL SIMULATION SCHEME

In this section, we would like to develop and impleme
an unconditionally stable scheme for simulating the gene
2-7
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CHEN, SHI, AND YI PHYSICAL REVIEW E69, 046602 ~2004!
ized NLS equation. The scheme can successfully incorpo
both multiplicative and additive noises into the symmetriz
split-step Fourier method@27,28#. It has been known tha
there are two forms of stochastic calculus, i.e., an Ito ca
lus and a Stratanovich@29,30# calculus. In our simulations
the Stratanovich prescription to integrate the stochastic n
terms is used since its variable changes simply follow
rules of usual calculus. In the following, we outline the ba
steps of our algorithm.

The generalized NLS equation including both the mu
plicative and additive noise terms can be written in its o
erator forms

]c

]z
5~D̂1N̂!c1ŜMc1ŜA ,

D̂5a0

i

2

]2

]t2
1

1

6
a1

]3

]t3
2g,

N̂5 i ucu22
a2

c

]

]t
~ ucu2c!2a3

]

]t
~ ucu2!, ~39!

ŜM5 iGR~z,t!,

ŜA5G~z,t!,

where D̂, N̂, ŜM , and ŜA correspond to the linear~disper-
sive!, nonlinear, multiplicative stochastic, and additive s
chastic operators, respectively. It has an exact solution
infinitesimalDz given by

c~z1Dz,t!5exp@Dz~D̂1N̂!#c~z,t!

1E
z

z1Dz

@ŜMc~z,t!1ŜA#dz. ~40!

To carry out our simulations, solution~40! is further approxi-
mated in a symmetrical form

c~z1Dz,t!.expF1

2
DzD̂Gexp@DzN̂m#expF1

2
DzD̂Gc~z,t!

1DWMc̄m1DWA , ~41!

where

DWM5
1

DtEt

t1DtE
z

z1Dz

ŜM~z,t!dt dz,

DWA5
1

DtEt

t1DtE
z

z1Dz

ŜA~z,t!dt dz,

N̂m5
1

2
@N̂~z,t!1N̂~z1Dz,t!#, ~42!

c̄m5
1

2
@c~z,t!1c~z1Dz,t!#.
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It has been noted that our symmetrized form of Eq.~41! has
two advantages at least. One is that the leading error i
third order in the step sizeDz. The other is that the imple
mentation is unconditionally stable since a semi-impli
method is used inN̂m and c̄m @27,29#. Furthermore, the in-
tegrals for the multiplicative and additive noises in Eq.~42!
are discretized in a one-dimensional lattice ofN52p ~p is a
positive integer! cells, where the lattice spacing isDt
5T/N with T being the lattice length. The resulting versio
take the forms

DWM , jm5
1

DtEt j

t j 1DtE
zm

zm1Dz

ŜM~z,t!dt dz,

~43!

DWA, jm5
1

DtEt j

t j 1DtE
zm

zm1Dz

ŜA~z,t!dt dz.

By means of Eq.~2!, the correlations of these noise term
can be expressed as

^WM , jm* WM , j 8m8&5
2«d j j 8dmm8Dz

n̄Dt
,

~44!

^WA, jm* WA, j 8m8&5
aGd j j 8dmm8Dz

n̄Dt
.

It has been assumed that the noises are Gaussian white
respect to time and space, meanwhile the time correla
function is taken asF(t2t8)52«d(t2t8), where «
54.631022 at a temperature of 300 K@13#. Techniques for
the efficient generation of Gaussian white noise have b
heavily investigated since the 1960s@29,30#. In this paper,
we obtain noises directly with various intensities from t
computer-based Gaussian random generator, e.g.,
NORMRND function in MATLAB software. In fact, the spa
tiotemporal colored noise can also be generated efficientl
this way, according to a robust algorithm developed
Garcı́a-Ojalvoet al. @31#.

On the other hand, the execution of the exponential
erator exp@DzD̂/2# is carried out in Fourier space by usin
the prescription

expF1

2
DzD̂GB~z,t!5HF 21 expF1

2
DzD̂~ iv!GFJ B~z,t!,

~45!

whereF denotes the Fourier-transform operation, andD̂( iv)
is obtained by replacing (]/]t) by iv. Considering its dis-
crete version, we employ the fast Fourier transform~FFT!
algorithm @32# to implement Eq.~45! efficiently, where a
high-frequency cutoff is used in an equivalentv lattice. Be-
cause of the nonvanishing boundary condition att56T/2,
the discrete valuesvk for dark solitons withk running from
1 to N in the FFT algorithm are different from those fo
bright cousins. More specifically,vk should be odd multiples
of p/T for dark solitons and even multiples for bright so
tons, but with the same spacingDv52p/T along thev
2-8
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TIMING JITTER OF FEMTOSECOND SOLITONS IN . . . PHYSICAL REVIEW E69, 046602 ~2004!
lattice. In the mean time, great care is taken to treat the F
approximation to the Fourier form of Eq.~45! for different
solitons@29#. The other executions of the stochastic and n
linear operators, i.e.,ŜM , ŜA , and N̂, are carried out int
space, and an iterated root-finding mechanism is adopte
evaluate the semi-implicit steps inN̂m and c̄m @27,29#.

As can be seen, it is rather straightforward, though a li
time-consuming, to simulate the stabilities for bright a
dark solitons. Therein we have chosen 0.04 and 0.005
discretization time and space meshes, respectively, to re
the discretization error. By considering the initial fluctuatio
in soliton parameters derived from Eq.~22!, the initial wave
functions for bright and dark solitons can be written as

cbri~0,t!5~11dA!sech@~11dA!t1dq#exp~2 idVt!,

~46!

cdar~0,t!5~11dB!tanh@~11dB!t2dQ#exp~2 idÃt!,

~47!

where dA5(1/A2n̄)dr1 , dq5(p/A24n̄)dr2 , dV

5(1/A6n̄)dr3 , dB5@9(p226)/4(31p2)2n̄#1/2dr4 , dQ

5A3/16n̄dr5, and dÃ5(1/A12n̄)dr6. Here dr i
( i 51, . . . ,6) areGaussian-independent random numbers
zero mean and variance equal to one. The simulating res
of stabilities under these initial conditions have been sho
in Figs. 1, 2 and 3~see Sec. II!.

For numerical evaluation of timing jitter, besides the sa
two steps and initial conditions as exploited above, we h
used the ensemble which is of 500 trajectories to red
sampling error, within a small distance of propagati
(.10 km). These values result from a compromise betw
time calculation and accuracy. Besides, care should be ta
to simulate the timing jitter for either type of solitons sin
each has a different expression for jitter variance. In the c
crete, the variance of timing jitter is generally defined
s t

25^tp
2&2^tp&

2, where the symbol̂ & denotes the so-calle
ensemble average andtp is the pulse position. For brigh
solitons, tp5(1/E)*2`

` tucu2 dt, whereE5*2`
` ucu2 dt de-

notes the pulse energy@19#. It is noted that for dark solitons
this center-of-mass method can only give information on
global energy distribution but not on the dark-pulse posit
itself @20#. Fortunately, in our simulations we can modify th
formula tp for bright solitons so that it is valid for dark
solitons. We have tp5(1/E)*2`

` t sech2(t2Q)ucu2 dt,
whereE5*2`

` sech2(t2Q)ucu2 dt. The multiplier sech2(t
2Q), (Q5a1z/3), is adopted to eliminate the effects of th
highly undulating cw background and overcome the non
nishing boundary condition~see Fig. 2!. For longer distances
(.100 dispersion lengths!, alternatively we can employ th
strategies taken by Hamaideet al. @20#, where the pulse po
sition is roughly found by means of a certain threshold c
dition. The numerical illustrations of timing jitter in terms o
these expressions will be shown in Sec. V.
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V. DISCUSSIONS

It is well-known that apart from optical losses or dissip
tion, timing jitter is the key factor which limits the tota
transmission distance of the soliton link. From Eqs.~26! and
~37!, we can see that there are three physical mechani
which induce deviations in the soliton position from its orig
nal location at the bit center. One is the vacuum fluctuatio
resulting from the Heisenberg uncertainty principle and
ing important for small propagation distances. The secon
the Gordon-Haus noise which comes from the gain and
in the fiber and produces the well known Gordon-Haus jit
@14#. In the long-distance soliton communications it is ess
tial for relatively long (.10 ps) pulses. The last is the Ra
man noise which originates from the intrinsic thermal qua
tum fluctuations of phonon reservoirs and generates
cubic growth in jitter variance, just like the Gordon-Hau
noise. The magnitude of the Raman jitter can be obtained
evaluating the overlap integralI(X) analytically or numeri-
cally. For simplicity, we use a single-Lorentzian model in o
analytical work and findI(X)5(4/15)X«, whereX5A or B
@13#.

Owing to the influences of these higher-order effects,
expressions of timing jitters are all a little different from
those obtained by using the perturbation theory of the N
equation@13,15#. For comparison, we summarize these no
sources which have different characteristic scaling proper
in the following.

A. Vacuum fluctuations

For bright solitons the mean-square timing jitter resulti
from the vacuum fluctuations is given by

s I (bri)
2 5

p2

24n̄
1F 1

6n̄
1

a1
2

8n̄
Gz2. ~48!

Correspondingly, the mean-square fluctuations for dark s
tons read

s I (dar)
2 5

3

16n̄
1F 1

12n̄
1

9~p226!a1
2

4~31p2!2n̄
Gz2. ~49!

It is clear that the mean-square fluctuations depend not o
on the quadratic growth in distancez, but also ona1

2 for
both bright and dark solitons. As seen, the vacuum fluct
tions originate from three fundamental contributions. One
the initial position fluctuations, while the other two com
from initial fluctuations in soliton frequency~or phase differ-
encef) and amplitude, respectively. As one might expe
amplitude fluctuations also lead to a degradation of
signal-to-noise of the soliton bit stream@17–19#. After a
simple calculation, we can see that the vacuum jitter varia
for dark solitons is nearly one half of that for bright soliton
at the same propagation distance.

B. Gordon-Haus noise

When the reservoir gain and loss are considered, th
appears the well-known Gordon-Haus jitter in the fiber sin
2-9
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CHEN, SHI, AND YI PHYSICAL REVIEW E69, 046602 ~2004!
the optical amplifiers add both the amplitude and ph
noises to the amplified soliton. Currently, this jitter is t
major limiting factor that affects the performance of solit
communications and the total transmission distance. F
Eqs. ~27! and ~38!, we can immediately obtain the Gordon
Haus jitter variance for bright and dark solitons:

sGH(bri)
2 5

p2aG

12n̄
z1F 1

9n̄
1

13a1
2

108n̄
GaGz3, ~50!

sGH(dar)
2 5

3aG

8n̄
z1F 1

18n̄
1

13~p226!a1
2

6~31p2!2n̄
GaGz3. ~51!

In the presence of higher-order effects, the mean-squ
Gordon-Haus jitters for both bright and dark solitons have
extra cubic growth, which depends ona1

2 and becomes im-
portant over a long distance. Like the case of vacuum fl
tuations, the ratio between Eq.~51! and Eq.~50! ranges from
0.42 to 0.5.

C. Raman noise

A lesser-known fluctuation effect that arises from the R
man phase-noise termGR induces the Raman jitter in optica
communications. The Raman jitter is different from t
Gordon-Haus jitter and independent of all higher-order
fects in our current system. SubstitutingI(X)5(4/15)X«
into the third formulas in Eqs.~27! and~38! and lettingA and
B51 yields

sR(bri)
2 5

8

45n̄
«z3, ~52!

sR(dar)
2 5

2

45n̄
«z3. ~53!

Compared to Gordon-Haus case, the mean-square Rama
ter for dark solitons is only 1/4 of that for bright soliton
Moreover, it is easy to follow from Eqs.~50! and ~52! @or
Eqs. ~51! and ~53!# that the Raman jitter dominates th
Gordon-Haus jitter in the femtosecond regime. Howev
when the soliton duration is of picosecond order, the cas
the opposite. The physical reason for these effects is sim
Solitons have an intensity that increases with the disper
if everything else is unchanged. Meanwhile, the multiplic
tive phase noise found in Raman propagation is proportio
to the intensity and hence becomes relatively large as c
pared to the Gordon-Haus jitter that depends on the add
stochastic term. Therefore, for large enough dispersion,
responding to the high intensity, the Raman jitter should
come readily observable at short enough distances while
Gordon-Haus jitter is relatively small.

For T05500 fs bright and dark solitons, typically, th
TOD parameter isa1579.631023, and the other param
eters are given bya253.1831023, a35(7a123a2)/2,
aG/LD54.631025 ~i.e., 0.2 dB/km at commonly use
wavelength l51.55mm), and n̄533106, with LD
5500 m. These parameters are evaluated based onub2u
50.5 ps2/km, b3570.0024 ps3/km ~negative for bright
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and positive for dark solitons!, Aeff540 mm2, and n252.6
310220 m2/W for a dispersion-shifted fiber. By utilizing
these parameters, all jitters including the vacuum fluct
tions, Gordon-Haus jitter and Raman jitter forT05500 fs
bright and dark solitons are depicted both numerically a
analytically, as shown in Figs. 5 and 6, respectively. Also,
total jitter corresponding to the realistic case in which
three noise sources are active is demonstrated there. In

FIG. 5. Timing jitter for the 500-fs bright soliton as a functio
of the transmission distance. The total jitter~squares!, vacuum fluc-
tuations~circles!, Raman jitter~stars! and Gordon-Haus jitter~tri-
angles! come from our numerical simulations based on Eq.~1!,
whereDz50.04 andDt50.005. The statistical ensemble is of 50
trajectories and other parameters are specified in the text. For c
parison, our analytical results~solid lines! are plotted.

FIG. 6. Timing jitter for the 500-fs dark soliton as a function
transmission distance. The total jitter~squares!, vacuum fluctuations
~circles!, Raman jitter~stars!, and Gordon-Haus jitter~triangles!
correspond to our numerical simulations, where the discreti
steps and ensemble are the same as in Fig. 5. The other param
are specified in the text. For comparison, our analytical res
~solid lines! are plotted here.
2-10
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TIMING JITTER OF FEMTOSECOND SOLITONS IN . . . PHYSICAL REVIEW E69, 046602 ~2004!
5 and 6, it is clear to see that the Gordon-Haus jitter in d
solitons is nearly 1/A2 of the corresponding one in brigh
solitons@20,21#. Meantime, the Raman jitter for femtosecon
solitons exceeds the corresponding Gordon-Haus one. M
over, all numerical simulations are in excellent agreem
with analytical solutions derived from the extended pertur
tion model. For extremely ultrafast pulses (,100 fs), these
higher-order effects become of considerable importan
therefore the complex property of coefficientsa2 anda3 in
Eq. ~1! should be taken into account@16#. To do this with this
model is still an open problem and is under investigation

From Eqs.~20! and ~33!, it is of interest to note that the
timing jitter in femtosecond soliton communications can
reduced considerably when the frequency fluctuations~or
phase fluctuations! are confined to a vanishingly small rang
by using some effective techniques for soliton control su
as filtering and optical phase conjugation@18#. As a result,
the timing jitter originates mostly from amplitude fluctu
tions imposed on solitons, because now the dominant co
butions come mainly from the terms proportional toa1

2. This
theoretical prediction is well consistent with the conclusi
drawn by Agrawalet al. @18#.

VI. CONCLUSIONS

In this paper, we have developed an extended soliton
turbation model based on the HONLS equation. The evo
tion equations for the soliton parameters and the resul
expressions for timing jitter have been derived for the fi
time, to our knowledge. Subsequently, the model has b
tested to be correct in subpicosecond-femtosecond reg
through direct numerical simulations of the underlying eq
tion by using the stochastic split-step Fourier method. I
shown that the results of our numerical simulations are
excellent agreement with analytical predictions for timi
jitter. We found that the Gordon-Haus jitter for dark solito
is nearly 1/A2 of that for bright solitons and the Raman jitt
always dominates the Gordon-Haus jitter in femtosecond
gime. In particular, the stabilities of the solitary waves ha
been demonstrated under the Gaussian white noise. In
picosecond regime, our theoretical predictions coincide w
those obtained in Refs.@13# and @15#. It is expected that for
bright and dark solitons, the present equations of mot
would find extensive applications in the high-speed comm
nication systems more than those obtained by use of
perturbation theory about the NLS equation.
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APPENDIX

In this appendix, we would like to outline the proof of E
~20!. In order to prove the first formula, we integrate bo
sides of Eq.~15! with the operation*2`

` dt f A* (t,z), utiliz-
ing the parities of the integral kernels. By taking the real p
of the integral equation and using the orthogonal relation
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~19!, with some tedious manipulations, the resulting ter
related to Eq.~15! can be written as

ReE
2`

`

f A* @Dc#z dt5@DA#z1ReE
2`

`

f A* @ f A#zDA dt

1ReE
2`

`

f A* @ f u#zDu dt

1ReE
2`

`

f A* @ f q#zDq dt

1ReE
2`

`

f A* @ f V#zDV dt

5@DA#z1
1

9
a1A3qDA2A3Du

2
1

9
a1A4Dq2A2qDV, ~A1!

ReE
2`

` i

2
f A* @Dc#tt dt5

1

3
A3Du1

1

3
A2qDV, ~A2!

ReE
2`

`

i f A* @c0
2Dc* 12uc0u2Dc#dt

52
4

3
A3Du2

4

3
A2qDV, ~A3!

ReE
2`

` a1

6
f A* @Dc#ttt dt52

7

45
a1A3qDA1

7

45
a1A4Dq,

~A4!

ReE
2`

`

a2f A* @c0
2Dc* 12uc0u2Dc#t dt

5
4

5
a2A3qDA2

4

5
a2A4Dq, ~A5!

ReE
2`

`

a3f A* @ uc0u2#tDc dt

52
8

15
a3A3qDA1

8

15
a3A4Dq, ~A6!

ReE
2`

`

a3f A* @c0* Dc1c0Dc* #tc0 dt

5
16

15
a3A3qDA2

16

15
a3A4Dq, ~A7!

where all quantitiesDA, Du, Dq andDV are real functions
of distancez. By substituting Eqs.~A1!–~A7! into the inte-
gral equation and using the relationa152(3a212a3), the
first formula,@DA(z)#z5GA , can be obtained readily. Simi
larly, the other three formulas in Eq.~20! can be proved.
2-11



k,

nu

e
J.

e,

-
5

, J.

rd,

s.

CHEN, SHI, AND YI PHYSICAL REVIEW E69, 046602 ~2004!
@1# A.I. Maimistov and M. Basharov,Nonlinear Optical Waves
~Kluwer, Dordrecht, 1999!.

@2# A. Hasegawa and F.D. Tappert, Appl. Phys. Lett.23, 142
~1973!.

@3# S.L. McCall and E.L. Hahn, Phys. Rev. Lett.18, 908 ~1967!.
@4# D. Anderson and M. Lisak, Phys. Rev. A27, 1393~1983!, and

references therein.
@5# F.M. Mitschke and L.F. Mollenauer, Opt. Lett.11, 659~1986!;

J.P. Gordon,ibid. 11, 662 ~1986!.
@6# Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron.23,

510 ~1987!.
@7# D. Mihalache, N. Truta, and L.-C. Crasovan, Phys. Rev. E56,

1064 ~1997!.
@8# M. Gedalin, T.C. Scott, and Y.B. Band, Phys. Rev. Lett.78,

448 ~1997!.
@9# S.L. Palacios, A. Guinea, J.M. Ferna´ndez-Dı´az, and R.D.

Crespo, Phys. Rev. E60, R45 ~1999!.
@10# K. Porsezian and K. Nakkeeran, Phys. Rev. Lett.76, 3955

~1996!; 74, 2941~1995!.
@11# Z.H. Li, L. Li, H.P. Tian, and G.S. Zhou, Phys. Rev. Lett.84,

4096 ~2000!.
@12# H.A. Haus and Y. Lai, J. Opt. Soc. Am. B7, 386 ~1990!.
@13# J.E. Corney and P.D. Drummond, J. Opt. Soc. Am. B18, 153

~2001!; P.D. Drummond and J.E. Corney,ibid. 18, 139~2001!.
@14# J.P. Gordon and H.A. Haus, Opt. Lett.11, 665 ~1986!; A.

Mecozzi, J.D. Moores, H.A. Haus, and Y. Lai,ibid. 16, 1841
~1991!.

@15# H.A. Haus and W.S. Wong, Rev. Mod. Phys.68, 423 ~1996!.
@16# Z.H. Li, L. Li, H.P. Tian, G.S. Zhou, and K.H. Spatsche

Phys. Rev. Lett.89, 263901~2002!.
@17# D. Mihalache, L.-C. Crasovan, N.-C. Panoiu, F. Moldovea

and D.-M. Baboiu, Opt. Eng.35, 1611~1996!.
@18# See, for example,Progress in Optics, edited by E. Wolf

~North-Holland, Amsterdam, 1997!, Vol. XXXVII, p. 185;
R.-J. Essiambre and G.P. Agrawal, J. Opt. Soc. Am. B14, 314
~1997!; 14, 323 ~1997!.
04660
,

@19# V.S. Grigoryan, C.R. Menyuk, and R.M. Mu, J. Lightwav
Technol.17, 1347 ~1999!; J. Santhanam and G.P. Agrawal,
Opt. Soc. Am. B20, 284 ~2003!, and references therein.

@20# J.P. Hamaide, P. Emplit, and M. Haelterman, Opt. Lett.16,
1578 ~1991!.

@21# Y.S. Kivshar, M. Haelterman, P. Emplit, and J.P. Hamaid
Opt. Lett.19, 19 ~1994!.

@22# L. Mandel and E. Wolf,Optical Coherence and Quantum Op
tics ~Cambridge University Press, Cambridge, England, 199!,
Chap. 3.

@23# R.H. Stolen and M.A. Bo¨sch, Phys. Rev. Lett.48, 805 ~1982!;
R.H. Stolen, J.P. Gordon, W.J. Tomlinson, and H.A. Haus
Opt. Soc. Am. B6, 1159~1989!.

@24# H.R. Brand and R.J. Deissler, Phys. Rev. Lett.63, 2801~1989!.
@25# Y.S. Kivshar, D.E. Pelinovsky, T. Cretegny, and M. Peyra

Phys. Rev. Lett.80, 5032~1998!.
@26# D.J. Kaup, Phys. Rev. A42, 5689~1990!; D. Mihalache, N.-C.

Panoiu, F. Moldoveanu, and D.-M. Baboiu, J. Phys. A27, 6177
~1994!.

@27# G.P. Agrawal,Nonlinear Fiber Optics~Academic, San Diego,
1989!.

@28# B. Khubchandani, P.N. Guzdar, and R. Roy, Phys. Rev. E66,
066609~2002!.

@29# P.D. Drummond and I.K. Mortimer, J. Comput. Phys.93, 144
~1991!; M.J. Werner and P.D. Drummond,ibid. 132, 312
~1997!.

@30# K. Ito, Lectures on Stochastic Processes~Tata Institute of Fun-
damental Research, Bombay, 1960!; R.L. Stratanovich,Topics
in the Theory of Random Noise~Gordon & Breach, New York,
1963!, Vols. I and II.

@31# J. Garcı´a Ojalvo, J.M. Sancho, and L. Ramı´rez-Piscina, Phys.
Rev. A46, 4670~1992!.

@32# J.W. Cooley and J.W. Tukey, Math. Comput.19, 297 ~1965!;
J.W. Cooley, P.A.W. Lewis, and P.D. Welch, IEEE Tran
Educ.12, 27 ~1969!.
2-12


